阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。阶乘,也是数学里的一种术语。阶乘只有计算方法,没有简便公式的,只能硬算。高中会遇到哪些阶乘公式?以下是伊顿教育小编整理的关于阶乘的相关公式大全,希望能方便大家。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
大于1的自然数n阶乘表示方法:
n!=1×2×3×……×n
或
n!=n×(n-1)!
n的双阶乘:
当n为奇数时表示不大于n的奇数的乘积
如:7!!=1×3×5×7
当n为偶数时表示不大于n的偶数的乘积(除0外)
如:8!!=2×4×6×8
小于0的整数-n的阶乘表示:
(-n)!= 1 / (n+1)!
以下列出0至20的阶乘:
0!=1,注意(0的阶乘是存在的)#p#副标题#e#
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5,040,
8!=40,320
9!=362,880
10!=3,628,800
11!=39,916,800
12!=479,001,600
13!=6,227,020,800
14!=87,178,291,200
15!=1,307,674,368,000
16!=20,922,789,888,000
17!=355,687,428,096,000
18!=6,402,373,705,728,000
19!=121,645,100,408,832,000
20!=2,432,902,008,176,640,000
另外,数学家定义,0!=1,所以0!=1!